Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 38(3): 1651-1680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299680

RESUMO

Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.


Assuntos
Aterosclerose , Ginsenosídeos , Saponinas , Humanos , Saponinas/farmacologia , Estudos Prospectivos , Aterosclerose/tratamento farmacológico , Ginsenosídeos/farmacologia , Anti-Inflamatórios
2.
Artigo em Inglês | MEDLINE | ID: mdl-37842894

RESUMO

Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.

3.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445682

RESUMO

Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Saponinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Saponinas/farmacologia , Saponinas/uso terapêutico , Proteínas tau
4.
Biomed Pharmacother ; 165: 115153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437377

RESUMO

BACKGROUND: The primary cause of acute cardiovascular events with high mortality is the rupture of atherosclerotic plaque followed by thrombosis. Sodium Danshensu (SDSS) has shown potential in inhibiting the inflammatory response in macrophages and preventing early plaque formation in atherosclerotic mice. However, the specific targets and detailed mechanism of action of SDSS are still unclear. OBJECTIVE: This study aims to investigate the efficacy and mechanism of SDSS in inhibiting inflammation in macrophages and stabilizing vulnerable plaques in atherosclerosis (AS). MATERIALS AND METHODS: The efficacy of SDSS in stabilizing vulnerable plaques was demonstrated using various techniques such as ultrasound, Oil Red O staining, HE staining, Masson staining, immunohistochemistry, and lipid analysis in ApoE-/- mice. Subsequently, IKKß was identified as a potential target of SDSS through protein microarray, network pharmacology analysis, and molecular docking. Additionally, ELISA, RT-qPCR, Western blotting, and immunofluorescence were employed to measure the levels of inflammatory cytokines, IKKß, and NF-κB pathway-related targets, thereby confirming the mechanism of SDSS in treating AS both in vivo and in vitro. Finally, the impact of SDSS was observed in the presence of an IKKß-specific inhibitor. RESULTS: Initially, the administration of SDSS led to a decrease in the formation and area of aortic plaque, while also stabilizing vulnerable plaques in ApoE-/- mice. Furthermore, it was identified that IKKß serves as the primary binding target of SDSS. Additionally, both in vivo and in vitro experiments demonstrated that SDSS effectively inhibits the NF-κB pathway by targeting IKKß. Lastly, the combined use of the IKKß-specific inhibitor IMD-0354 further enhanced the beneficial effects of SDSS. CONCLUSIONS: SDSS stabilized vulnerable plaques and suppressed inflammatory responses by inhibiting the NF-κB pathway through its targeting of IKKß.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Aterosclerose/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apolipoproteínas E/metabolismo
5.
Mediators Inflamm ; 2023: 1097706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292256

RESUMO

Atherosclerosis, the main pathological basis of cardiovascular disease, is a chronic inflammatory disease that severely affects the quality of human life. Resveratrol (Res) is a natural polyphenol that is a major component of many herbs and foods. The present study analyzed resveratrol from the perspective of visualization and bibliometric analysis and found that resveratrol is closely related to the inflammatory response in cardiovascular diseases (associated with atherosclerosis). To explore the specific molecular mechanism of resveratrol, network pharmacology and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used, in which HIF-1α signaling may be a key pathway in the treatment of AS. Furthermore, we induced the polarization of macrophage RAW264.7 to M1 type to generate inflammatory response by the combination of lipopolysaccharide (LPS) (200 ng/mL) + interferon-γ (IFN-γ) (2.5 ng/mL). LPS and IFN-γ increased the inflammatory factor levels of IL-1ß, TNF-α, and IL-6 in RAW264.7, and the proportion of M1-type macrophages also increased, but the expression of inflammatory factors decreased after resveratrol administration, which confirmed the anti-inflammatory effect of resveratrol in AS. In addition, we found that resveratrol downregulated the protein expression of toll-like receptor 4 (TLR4)/NF-κB/hypoxia inducible factor-1 alpha (HIF-1α). In conclusion, resveratrol has a significant anti-inflammatory effect, alleviates HIF-1α-mediated angiogenesis, and prevents the progression of AS through the TLR4/NF-κB signaling pathway.


Assuntos
Aterosclerose , NF-kappa B , Humanos , NF-kappa B/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios , Aterosclerose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...